PEI (SABIC ULTEM1010)のRaptor22LT2による連続再生と光学的評価 SPIRAL LOGIC LIMITED

協力 SABIC Innovative Plastics

2011年4月30日

1. 背景と目的

ULTEM(ウルテム・SABIC Innovative Plastics社の商標)は、耐熱樹脂のPEI(ポリエーテルイミド)として有名であるが、耐熱性と同 時に優れた光学特性を備えていることはあまり知られていない(【表1】)。

樹脂	ULTEM1010	OKP4HT	PC	COP	PMMA
透過率	87	90	89	92	93
屈折率	1.637	1.632	1.585	1.525	1.490
アッベ数	20.1	23.0	58.0	56.0	29.0

【表1代表的なレンズ用樹脂の波長850nmにおける光学特性】

ULTEMは、バージンが独特の黄色がかった色を呈しているため、撮像系のレンズには使われないが、【表1】に示すような優れた光学 特性を持つため、最近ではOptical Transceiver TOSA/ROSAのレンズに採用されている。また、新しい用途としては、Light Peak モ ジュールのレンズアレイへの展開が期待される。

Intel社が開発した光インタフェイス技術であるLight Peakは、伝送速度がUSB3.0に比べて約2倍で、パソコンやデジカメの接続用 として普及すると、年間30億個という膨大な需要があると言われている。しかしながら、一般にULTEMは黒点が発生しやすい樹脂とさ れている。また、粉砕材では白点を生ずるともされる。

そこで、SPIRAL LOGIC搭載成形機とエンプラ専用ランナ再生装置Raptor22LT2による、連続再生実験および光学的な測定評 価によって、ULTEM1010の再生実用化の可否を検証する。

2. 実験方法

2-a. 実験条件

実験は、【表2】の条件のもとで、【写真1】に示す評価用テストピースを5種類 作成した。

実施場所および時期	Sansyu Precision (HK) Ltd. 2010年12月	
樹脂	ULTEM1010	
評価用テストピース	50.0 x 50.0 x t2.0 mm 1個取	t2.0 mm
成形機	住友SE18DU / C30 16SL	50.0 mm
成形条件	バレル温度:360°C 射出量:6.8 g 成形サイクル:17.0 sec	50.0 mm
ペレタイザ	Raptor22LT2	50.0 mm
再生条件	バレル温度:360°C	

【表2 実験条件】

【写真1 評価用テストピース】

2-b. 実験工程

5種類のテストピース作成の具体的な工程は、【表3】のとおりである。なお、再生材をテストピースに成形する場合は、各段階の再生 材を100%使用した。【写真2】では、テストピース1(成形1回目)から再生1回材、さらにテストピース2(成形2回目)への成形工程サイク ルを示した。各段階のサイクルも同様に進行している。

テストピース1 (成形1回目)	バージン材を成形したもの
テストピース2 (成形2回目)	テストピース1を粉砕 ― ペレタイズした再生1回材を成形したもの
テストピース3 (成形3回目)	テストピース2を粉砕 ― ペレタイズした再生2回材を成形したもの
テストピース4 (成形4回目)	テストピース3を粉砕> ペレタイズした再生3回材を成形したもの
テストピース5 (成形5回目)	テストピース4を粉砕 → ペレタイズした再生4回材を成形したもの

2-c. 実験結果

【写真3】は、バージン材と再 生で得られた4段階のペレット および各段階の樹脂を成形し た5種類のテストピースである。 ペレットは、深さ5mmの透明PS 製のケースに敷き詰めて撮影し た。

3-b. 黒点(コンタミ)

各テストピースの中心部10mmx10mm の範囲にある、直径0.1mm以上の黒点の 数を計測し、1個以下を良品、2個以上を不 良品と判定した(【表4】)。テストピース5(成 形5回目)においても、黒点で不良になるのは サンプル5枚中1枚のみで、黒点の個数も2 個にとどまる。

サンプル番号 テストピース テストピース テストピース テストピース テストピース

波 長(nm) テストピース

テストピース

テストピース

テストピース

テストピース

3-c. 屈折率

各テストピースの屈折率を、光線の波長 別に計測した(【表5】)。すべての波長域にお いて再生材を使用しても、屈折率に変化は ない。

3-d. 透過率

各テストピースの透過率を、光線の波長 別に計測した(【表6】)。VCSELのレーザ光 波長である850nm以上の領域では、再生 材を使用しても透過率にほとんど変化はない。 波 長(nm) テストピース テストピース テストピース テストピース テストピーフ

4.結論

SPIRAL LOGIC搭載成形機およびエンプラ専用ランナ再生装置Raptor22LT2の使用により、ULTEM1010は優れた光学特性を 維持しながら、再生材を利用することが可能である。また、評価3-b.にあるとおり、この機器の組合せは、コンタミ対策として有効である。

バージン材

テストピース1

(成形1回月)

示差熱重量計(TG)による重量低下率を測定した(【図1】)。 バージン材・テストピース1(成形1回目)・テストピース2(成形2 回目)は、ほぼ同一の曲線を描いている。つまり、バージン材を 使用したものと再生1回材を使用したものとの間には差異は 認められない。

さらに、テストピース4(成形4回目)においても、400℃でわず か0.2%しか重量減少が発生しないことから、耐熱性は維持さ れていることがわかる。

520

	No.1	No.2	No.3	No.4	No.5	
I(成形1回目)	0	0	0	0	0	
2(成形2回目)	0	0	0	0	0	
3(成形3回目)	1	0	1	0	0	
4(成形4回目)	1	0	0	0	0	
5(成形5回目)	1	0	2 (NG)	1	1	

【表4 計測黒点数と判定】

	1,550	1,310	850	656.3	587.3	546.1	486.1	435.8
1(成形1回目)	1.6224	1.6254	1.6370	1.6518	1.6613	1.6692	1.6849	1.7045
2(成形2回目)	1.6223	1.6252	1.6371	1.6520	1.6616	1.6694	1.6849	1.7040
3(成形3回目)	1.6221	1.6250	1.6368	1.6517	1.6613	1.6691	1.6849	1.7044
4 (成形4回目)	1.6222	1.6251	1.6368	1.6517	1.6613	1.6691	1.6848	1.7043
5(成形5回目)	1.6221	1.6250	1.6367	1.6516	1.6612	1.6691	1.6849	1.7047

【表5 各波長における屈折率】 *SABIC Innovative Plastics社による測定結果

	1,550	1,310	850	780	700	600	500
l(成形1回目)	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2(成形2回目)	99.7	99.7	99.2	99.0	98.1	95.9	89.2
3(成形3回目)	99.2	99.2	98.1	97.5	96.1	91.6	79.0
1(成形4回目)	99.1	99.0	97.5	96.5	94.7	88.5	71.9
5(成形5回目)	98.9	99.1	96.8	95.9	93.4	85.7	65.5

【表6各波長における透過率】 *SABIC Innovative Plastics社による測定結果